Environmental, Health and Safety Impacts of Nanoparticles
Introduction

Experts' Analysis

Detection & Characterization

Univ. of Beijing: Comparative analysis of the methods available for carbon nanotube detection in biological matrices. 5
Univ. of Arkansas: Photothermal and photoacoustic detection of carbon nanotubes in plants 7

Toxicology

Katholieke Univ. Leuven & Univ. Catholique de Louvain: Relationship between physicochemical properties and nanosilica toxicity 9

In vitro studies

Univ. of Queensland: Fibrinogen/nanoparticles interaction unravels functional epitopes and triggers a pro-inflammatory cell response 10
Univ. of Lausanne & Univ. of Orleans: Inhalation of TiO2 nanoparticles exerts pro-inflammatory activities through the nlrp3 inflammasome 11
NIOSH, Karolinska Inst. & Univ. of Pittsburgh: Comparison of the genotoxic potential of carbon-based nanofibers, single-walled carbon nanotubes and asbestos 12

In vivo studies

Pacific Northwest Nat. Lab.: High-throughput proteomics and conventional toxicological assays for identifying biomarkers of nanomaterial pulmonary exposure 13

Ecotoxicology

Indian Inst. of Toxicology Research: Assessment of metal oxide nanoparticles mutagenicity in bacteria 14

Risk Assessment & Risk Management

RIVM, Phillips Research & RIKILT: Nanosilica in food. Analytical characterisation and risk assessment 17
Jackson State Univ.: Predicting metal oxide nanoparticle toxicity 18

Index

Companies, organisations & experts quoted in this report 21
Introduction

The fourth meeting of the European Observatory on NanoSafety (EONS) has been held in Brussels on March 31, 2011. The present report compiles the articles' presentations and the discussions developed during this event.

About the European Observatory on NanoSafety
The European Observatory on NanoSafety (EONS) is a collective initiative launched in 2009 by the Observatory for Micro&Nanotechnologies (OMNT) and the European consortium ENPRA (Risk Assessment of Engineered NanoParticles). Every 6 months, EONS meetings bring together experts in environmental health and safety issues related to nanoparticles and nanomaterials (including OMNT experts, partners of the ENPRA project and invited key scientists) and provide them with the unique opportunity to collectively review and comment the latest research progresses of the domain. Topics addressed by the panel cover the full scope of ‘NanoSafety’ including detection and characterization of nanomaterials, toxicology, ecotoxicology, risk assessment and risk management as well as normative and regulatory aspects. Proceedings of the meetings are published by the OMNT.
There has been a steady increase in the interest of carbon nanofibers (CNF) by industry. Compared to carbon nanotubes, CNF are relatively cheap to produce. They are used in particular in composite materials for the improvement of strength, durability, heat resistance and conductivity. However, despite their increasing use, to date only few toxicological studies have been performed with CNF.

In the present study from the National Institute for Occupational Safety and Health, the Karolinska Institute and the University of Pittsburgh, the genotoxic potential of CNF in vitro has been addressed in comparison to single-walled carbon nanotubes (SWCNT) and of crocidolite asbestos fibres. A well-characterised heat-treated CNF sample (Pyrograf®-III, median aspect ratio: 500) was evaluated along with a sample of SWCNT (mean aspect ratio: 1000) and the IUCC crocidolite asbestos reference sample (mean aspect ratio: 30). Genotoxicity was evaluated in V79 Chinese hamster lung fibroblasts by the alkaline comet assay and the micronucleus (MN) test (Figure 5). The relative contribution of clastogenic versus aneugenic effects to MN-formation was addressed in SAEC human small airway epithelial cells using fluorescence in situ hybridisation (FISH). Parallel experiments described in the paper revealed CNF uptake and reactive oxygen species (ROS) formation in RAW267.4 mouse macrophages, as determined by transmission electron microscopy (TEM) and electron spin resonance (ESR), respectively.

The study demonstrates that CNF have a genotoxic potential and also reveal that the effects of the specific CNF sample were generally stronger than that of both SWCNT and crocidolite, when compared on a mass concentration basis. Evaluation of CNF-treated SAEC cells by MN-FISH analysis showed that both clastogenic and aneugenic effects occurred, although the high proportion of centromere-positive MN indicated that aneugenicity is dominating.

The paper provides important novel information on the potential genotoxic action of CNF. The study findings are also in support of the hypothesis that genotoxic effects of high aspect ratio nanomaterials may involve two different mechanisms, namely (1) ROS generation leading to DNA strand breakage and (2) physical interference with DNA/chromosomes and/or the mitotic apparatus resulting in chromosomal malsegregation.

Some concern was expressed about the fact that the MN-test was not entirely performed according to the currently recommended guidelines. Moreover, it should be noted that the genotoxic effects versus uptake and ROS formation were measured in different cell types.

"Genotoxicity of carbon nanofibers: are they potentially more or less dangerous than carbon nanotubes or asbestos?"; E.R. Kisin, A.R. Murray, L. Sargent, D. Lowry, M. Chirila, K.J. Siegrist,

EONS06-11-5
RIVM, Philips Research & RIKILT: Nanosilica in food. Analytical characterisation and risk assessment

Reviewed by K. Aschberger

This paper by researchers from the RIVM, Philips Research and the RIKILT describes a risk assessment appraisal for one important nanomaterial used in food products. For the exposure assessment, the presence, particle size and concentration of nanosilica were analysed in several food products. As an example Figure 8 shows the presence of silica nanoparticles in a sample of coffee containing powdered creamer. Based on these measurements and consumption data the intake of nanosilica via food was estimated to be 124 mg/day (1.8 mg/kg bw/day). The contribution of each product to the total nanosilica intake was estimated (Figure 9). For the hazard assessment there is only limited data publicly available on the kinetics and toxicity of nanosilica, suggesting that nanosilica becomes bioavailable to some degree and can exert toxicity on the liver, with higher potency for the nano-form than for the non-nanoform.

Scenario 1 assumed that all nanosilica particles were dissolved in the gastrointestinal tract (GIT) and absorbed as dissolved silica. The risk assessment for systemic effects was based on hazard data with non-nanosilica (No Effect Level or NEL: 625 mg/kg bw/d from a chronic study) and concluded with no risk.

The second scenario assumed that nano-silica was absorbed as particles from the GIT and a Lowest Observed Adverse Effect Level (LOAEL) of 1500 mg/kg/bw/d from a 10 week with nanosilica study was used. This scenario however included too many uncertainties with regard to limited toxicity data, the most appropriate dose metrics, the nanosilica characteristics and the assessment factors, to draw any conclusion.
The results in the paper confirm that nanosilica is present in food products sold on the European market. The article also shows that nanosilica concentrations may change with food processing, although this was only considered for one food product (coffee creamer in hot coffee vs. water). Measured concentrations of nanomaterials are thus dependent on the sample preparation (e.g. sonification, temperature, solvent).

The study very well highlights the knowledge gaps and uncertainties in the different steps in performing a risk assessment of nanomaterials and points to priorities in research. In addition it may be mentioned that natural sources of silicon in food products were not considered in the calculation. The rather high limit of detection (0.3 mg/g; 1 mg/l) of the used analytical methods is a further limitation of the exposure estimation.

EONS06-11-8
Companies, organisations & experts quoted in this report

Companies
 Phillips Research, 17

Experts/Other personalities
 Napierska D., 9
 Puzyn T., 18
 Teeguarden T., 13

OMNT Experts
 Aschberger K., 17
 Auffan M., 9
 Baeza A., 10
 Bottero J.Y., 9
 Flahaut E., 5, 7
 Hoet P., 14
 Lanone S., 13
 Rose J., 9
 Schins R., 12

 van den Brule S., 18
 Vandebriel R.J., 11

Universities and Research Centres
 Indian Inst. of Toxicology Research, 14
 Karolinska Inst., 12
 Katholieke Univ. Leuven, 9
 NIOSH, 12
 Pacific Northwest Nat. Lab., 13
 RIKILT, 17
 RIVM, 17
 Univ. Catholique de Louvain, 9
 Univ. of Arkansas, 7
 Univ. of Beijing, 5
 Univ. of Lausanne, 11
 Univ. of Orleans, 11
 Univ. of Pittsburgh, 12
 Univ. of Queensland, 10
| List of experts involved in Environmental, Health and Safety Impacts of Nanoparticles |
|----------------------------------|---|-------------------|
| Rob AITKEN | IOM Edinburgh, United Kingdom | ENPRA |
| Pascal ANDUJAR | CHI Créteil, France | OMNT |
| Karin ASCHBERGER | JRC Ispra, Italy | ENPRA |
| Mélanie AUFFAN | CNRS, Univ. Paul Cézanne, France | OMNT |
| Armelle BAEZA | Univ. Paris 7, France | OMNT - ENPRA |
| Daniel BLOCH | CEA Grenoble, France | OMNT |
| Sonja BOLAND | Univ. Paris 7, France | ENPRA |
| Jean - Yves BOTTERO | CNRS – Univ. Paul Cézanne, France | OMNT |
| Sybille van den BRULE | Univ. Catholique de Louvain, Belgium | ENPRA |
| Enrico BURELLO | JRC Ispra, Italy | ENPRA |
| Flemming CASSEE | RIVM, The Netherlands | ENPRA |
| Emmanuel FLAHAUT | CNRS – Univ. Paul Sabatier, France | OMNT |
| Stefania GOTTLARDO | Univ. Venice, Italy | ENPRA |
| Peter HOET | Katholieke Univ. Leuven, Belgium | ENPRA |
| Marie - Claude JAURAND | INSERM, France | OMNT |
| Wim de JONG | RIVM, The Netherlands | ENPRA |
| Micheline KIRCH-VOLDERS | Vrije Univ. Brussel, Belgium | ENPRA |
| Jennifer McLEISH | Univ. Edinburgh, United Kingdom | ENPRA |
| Stéphanie LACOUR | CNRS, France | OMNT |
| Sophie LANONE | INSERM, France | OMNT |
| Dominique LISON | Univ. Catholique de Louvain, Belgium | ENPRA |
| Steffen LOFT | Univ. Copenhagen, Denmark | ENPRA |
| Katrien LUYTS | Katholieke Univ. Leuven, Belgium | ENPRA |
| Antonio MARCOMINI | Univ. Venice, Italy | ENPRA |
| Craig POLAND | IOM Edinburgh, United Kingdom | ENPRA |
| Juan RIEGO-SINTES | JRC Ispra, Italy | ENPRA |
| Jérome ROSE | CNRS, Univ. Paul Cézanne, France | OMNT |
| Bryony ROSS | IOM Edinburgh, United Kingdom | ENPRA |
| Roel SCHINS | IUF Düsseldorf, Germany | ENPRA |
| Lang TRAN | IOM Edinburgh, United Kingdom | ENPRA |
| Rob VANDEBRIEL | RIVM, The Netherlands | ENPRA |
| Christian VILLIERS | INSERM, France | OMNT |
ENPRA Partners

IOM (UK)
Napier Univ. (UK)
Univ. Edinburgh (UK)
Univ. Diderot Paris 7 (FR)
CEA (FR)
Univ. Catholique de Louvain (BE)
Katholieke Univ. Leuven (BE)
Vrije Univ. Brussel (BE)
HMGU (GE)
IUF (GE)
Univ. Copenhagen (DK)
NRCWE (DK)
Univ. Venezia (IT)
JRC (pan-EU)
RIVM (NL)

Forthcoming workshop of the Observatory

NEMS 2011
International seminar on nanomechanical systems
Toulouse, France, July 4-5, 2011
http://www.omnt.fr/nems2011/