Introduction

Experts’ Analysis

Detection & Characterization
Nanotechnology Inst. of Lyon, Nat. Univ. of Kiev & INSA Lyon: Evidence of nanoparticle transport through a gas phase? 5
Indian Inst. of Technology Guwahati: “Home-made” Carbon-dots in the kitchen? 6

Toxicology
Johns Hopkins University & ECSIN: In vitro assays for nanomaterial toxicity 9

In vitro studies
Univ. Medical School of Daejeon: Silver nanoparticles reduce allergic airway inflammation 10
Univ. of New South Wales: Effect of serum on TiO₂ nanoparticle aggregation, cellular uptake and toxicity 10

In vivo studies
BASF & Univ. of Mainz: Toxicity/biokinetics of nanomaterials 11

Environmental Impacts
NIST & CCEHBR: Environmental fate of silver nanoparticles from everyday consumer products. Evidence of silver release and accumulation in the aquatic compartment 13

Risk Assessment & Risk Management
NIOSH: Is effective surface area the most appropriate metric for prediction of nanoparticle toxicity? 15
ILSI: Guidance for addressing potential safety issues associated with the use of nanomaterials in food products 16

Index
Companies, organisations & experts quoted in this report 19
Introduction

The sixth meeting of the European Observatory on NanoSafety (EONS) has been held in Paris on May 24, 2012. The present report summarises the literature analysis and the discussions developed during this event.

About the European Observatory on NanoSafety

The European Observatory on NanoSafety (EONS) is a collective initiative launched in 2009 by the Observatory for Micro&Nanotechnologies (OMNT) and the European consortium ENPRA (Risk Assessment of Engineered NanoParticles). Every 6 months, EONS meetings bring together experts in nanotechnology environmental health and safety (including OMNT experts, partners of the ENPRA project and invited key scientists) and provide them with the unique opportunity to collectively review and comment the latest research progresses of the domain. Topics addressed by the panel cover the full scope of ‘NanoSafety’ including detection and characterization of nanomaterials, toxicology, ecotoxicology, risk assessment and risk management as well as normative and regulatory aspects. Proceedings of the meetings are published by the OMNT
Environmental Impacts

NIST & CCEHBR:
Environmental fate of silver nanoparticles from everyday consumer products. Evidence of silver release and accumulation in the aquatic compartment

Reviewed by N. Manier

Engineered nanomaterials are now being manufactured in ever increasing quantities and incorporated in a wide range of products and sectors. Among them, silver nanoparticles can be found in several everyday consumer products including antibacterial textiles, antibacterial wound dressing as well as tooth paste or toys. Based on the life cycle of these products, silver nanoparticles are likely to end up in the environment. Assessment of the environmental risk posed by such kind of consumer products is a real challenge and, one research priority is to estimate the potential release as well as the environmental fate and behavior of the nanoparticles for which very little information are currently available.

In this context, Danielle Cleveland and collaborators from the National Institute of Standards and Technology and the Center for Coastal Environmental Health and Biomolecular Research have used replicated estuarine mesocosm systems in order to study the leaching, the environmental fate and the bioaccumulation behavior of silver nanoparticles from selected consumer products: a nanocrystalline silver-coated antimicrobial wound dressing, a dress sock advertised to contain silver-coated nylon fibers and a stuffed toy bear that was advertised to contain silver nanoparticles in its foam stuffing [1].

Estuarine mesocosm systems (Figure 5) were established in a greenhouse and the environmental compartment of interest contained the seawater, the sediment (intertidal) as well as biofilm, aquatic plants (Spartina alterniflora), mud snails (Ilyanassa obsoleta), grass shrimp (Palaemonetes pugio) and hard clams (Mercenaria mercenaria). Each consumer product was placed intact on the water surface and left to float or sink undisturbed for 60 days (Figure 6). Total silver was tracked over the testing period in each compartment and in the organisms as well as in the products themselves. This pilot study can be seen as a first approximation of the environmental fate of nanosilver contained in consumer products discarded in an estuarine environment.

The authors firstly showed that the consumer products exhibited long-term release of significant amount of silver over the 60 days residence time in the mesocosm. Ultimately release of 95% of the sock total silver loads was reported while the wound dressing and toy bear had released up to 99% and 82% of their total silver content, respectively. These findings are in line with previous data from Benn and Westerhoff (2008), who reported that ordinary laundering can wash off substantial amounts of nanosilver particles from antibacterial socks [2].
The authors then showed that once released in the water column, silver was quickly transferred from the seawater to the sediment and readily adsorbed to the biofilm. Silver also accumulated in the estuarine biota (snails, shrimp and clams). The authors calculated the bioaccumulation factor (BCF) and the trophic transfer factors (TTF) and suggested that silver nanoparticles can be directly taken up from the seawater, by biofilms, sediment or sand, whereas primary transfer route of silver into the snails, shrimp and clams is likely via trophic intake of the biofilms.

This paper presents the first mesocosm study addressing and quantifying the release and fate of nanoparticles from consumer products in estuarine aquatic compartment, as well as the potential bioaccumulation behavior in living organisms. Despite the lack of nanoparticles characterization in the different compartments, Cleveland et al. have published here an interesting data set that can be useful for estimating or modeling the release and fate of nanoparticles from consumer products, which are crucial for the environmental risk assessment.

The paper presents a systemic, tiered approach to assess the safety of engineered nanomaterials (ENM) in food [1]. The underlying work was commissioned by the Novel Foods and Nanotechnology Task Force of the European Branch of the International Life Sciences Institute (ILSI Europe) for which additional experts were consulted during a Workshop organized in 2011.

The safety assessment of ENM for food applications is presented in five steps: characterization of the bulk material(s) from which the ENM is derived; characterization of the physicochemical properties of the ENM; identification of ENMs requiring focused toxicological assessment (Decision tree); toxicological assessment (tiered approach) and safety evaluation of ENM 'as used' in its intended food matrix.

The safety assessment is mainly based on a comparative approach to exploit available information on the non-nano counterpart. A key part of the assessment is the decision tree (Figure 8) based on solubility and dissolution rate, which sorts ENMs for toxicological testing. The toxicity testing follows a tiered approach, where the first tier is considered a screening level, and the second tier serves for the hazard identification and characterization. The tiered approach has to be followed on a case by case basis, therefore further decision guidance cannot be given. For the exposure assessment eventual modification of the ENM in the food matrix and dosimetry considerations are considered.

In May 2011 the European Food Safety Authority (EFSA) published the "Guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain" [2]. In comparison to it, the current paper focuses more on the hazard assessment and presents the tiered approach which can be better tailored to toxicity testing on a case by case basis than decision trees. The structure of the paper follows a conventional risk assessment paradigm.
The guidance is comprehensive and presents the current scientific status with a view to possible methodologies in future. In addition, it presents examples to explain better the decision tree. The decision tree as main criteria for toxicity testing or not, might be understood as oversimplification, as decisions may not always be so straightforward as presented (YES/NO), especially as the time component is not given.

In conclusion, this is a highly relevant document for authorities, researchers and ENM developers to give guidance on how to perform a risk assessment, but also on how to focus testing and/or development of new food ingredients.

Companies, organisations & experts quoted in this report

Companies

BASF, 11

Experts/Other personalities

Benn T.M., 13
Cleveland D., 13
Hartung T., 9
Sabbioni E., 9
Serdiuk T., 5
Westerhoff P., 13

OMNT Experts

Aschberger K., 16
Baeza A., 10
Flahaut E., 6, 15
Manier N., 13
Petitot F., 11
Ross B.L., 9
Thill A., 5

van den Brule S., 10

Universities and Research Centres

CCEHBR, 13
ECSIN, 9
European Food Safety Authority, 17
Indian Inst. of Technology Guwahati, 6
INSA Lyon, 5
International Life Sciences Inst., 16
Johns Hopkins Univ., 9
Nanotechnology Inst. of Lyon, 5
Nat. Inst. for Occupational Safety and Health, 15
Nat. Univ. of Kiev, 5
NIST, 13
Univ. Medical School of Daejeon, 10
Univ. of Mainz, 11
Univ. of New South Wales, 10
| List of experts involved in Environmental, Health and Safety Impacts of Nanoparticles |
|-----------------|-----------------|-----------------|
| Rob AITKEN | IOM Edinburgh, United Kingdom | ENPRA |
| Pascal ANDUJAR | CHI Créteil, France | OMNT |
| Karin ASCHBERGER| JRC Ispra, Italy | ENPRA |
| Mélanie AUFFAN | CNRS, Univ. Paul Cézanne, France | OMNT |
| Armelle BAEZA | Univ. Paris 7, France | OMNT - ENPRA |
| Daniel BLOCH | CEA Grenoble, France | OMNT |
| Sonja BOLAND | Univ. Paris 7, France | ENPRA |
| Jean - Yves BOTTERO | CNRS – Univ. Paul Cézanne, France | OMNT |
| Sybille van den BRULE | Univ. Louvain, Belgium | ENPRA |
| Enrico BURELLO | JRC Ispra, Italy | ENPRA |
| Flemming CASSEE | RIVM, The Netherlands | ENPRA |
| Emmanuel FLAHAUT| CNRS – Univ. Paul Sabatier, France | OMNT |
| Laetitia GONZALEZ | Vrije Univ. Brussel, Belgium | ENPRA |
| Stefania GOTTARDO | Univ. Venice, Italy | ENPRA |
| Peter HOET | Univ. Leuven, Belgium | ENPRA |
| Marie - Claude JAURAND | INSERM, France | OMNT |
| Wim de JONG | RIVM, The Netherlands | ENPRA |
| Micheline KIRSCH-VOLDER | Vrije Univ. Brussel, Belgium | ENPRA |
| Jennifer McLEISH| Univ. Edinburgh, United Kingdom | ENPRA |
| Stéphanie LACOUR| CNRS, France | OMNT |
| Sophie LANONE | INSERM, France | OMNT |
| Ghislaine LACROIX| INERIS, France | OMNT |
| Dominique LISON | Univ. Louvain, Belgium | ENPRA |
| Steffen LOFT | Univ. Copenhagen, Denmark| ENPRA |
| Katrien LUYTS | Univ. Leuven, Belgium | ENPRA |
| Nicolas MANIER | INERIS | OMNT |
| Antonio MARCOMINI| Univ. Venice, Italy | ENPRA |
| Fabrice PETITOT | IRNS, France | OMNT |
| Craig POLAND | IOM Edinburgh, United Kingdom | ENPRA |
| Jérôme ROSE | CNRS, Univ. Paul Cézanne, France | OMNT |
| Bryony ROSS | IOM Edinburgh, United Kingdom | ENPRA |
| Roel SCHINS | IUF Düsseldorf, Germany | ENPRA |
| Antoine THILL | CEA Saclay, France | OMNT |
| Lang TRAN | IOM Edinburgh, United Kingdom | ENPRA |
| Rob VANDEBRIEL | RIVM, The Netherlands | ENPRA |
ENPRA Partners

IOM (UK)
Napier Univ. (UK)
Univ. Edinburgh (UK)
Univ. Diderot Paris 7 (FR)
CEA (FR)
Univ. Catholique de Louvain (BE)
Katholieke Univ. Leuven (BE)
Vrije Univ. Brussel (BE)
HMGU (GE)
IUF (GE)
Univ. Copenhagen (DK)
NRCWE (DK)
Univ. Venezia (IT)
JRC (pan-EU)
RIVM (NL)

Forthcoming workshop of the Observatory

Comportement in vivo des nanomédicaments et apports des outils d'imagerie
17 JANVIER 2013
ESPACE TÊTE D'OR
LYON

ELARA
m.nt